In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that for a topologically conjugate function follows trivially.Arnold V. I. Geometric Methods in the Theory of Ordinary Differential Equations (Springer, 2020) [1]
To illustrate this directly: suppose that and are iterated functions, and there exists a homeomorphism such that
being topologically semiconjugate to means, by definition, that is a surjection such that .
and being topologically conjugate means, by definition, that they are topologically semiconjugate and is furthermore injective, then Bijection, and its Inverse function is continuous too; i.e. is a homeomorphism; further, is termed a topological conjugation between and .
being topologically semiconjugate to means, by definition, that is a surjection such that , for each , .
and being topologically conjugate means, by definition, that they are topologically semiconjugate and is a homeomorphism. Arnold V. I. Geometric Methods in the Theory of Ordinary Differential Equations (Springer, 2020) [2]
However, the analogous definition for flows is somewhat restrictive. In fact, we are requiring the maps and to be topologically conjugate for each , which is requiring more than simply that orbits of be mapped to orbits of homeomorphically. This motivates the definition of topological equivalence, which also partitions the set of all flows in into classes of flows sharing the same dynamics, again from the topological viewpoint.
for each . In addition, one must line up the flow of time: for each , there exists a such that, if , and if is such that , then .
Overall, topological equivalence is a weaker equivalence criterion than topological conjugacy, as it does not require that the time term is mapped along with the orbits and their orientation. An example of a topologically equivalent but not topologically conjugate system would be the non-hyperbolic class of two dimensional systems of differential equations that have closed orbits. While the orbits can be transformed to each other to overlap in the spatial sense, the periods of such systems cannot be analogously matched, thus failing to satisfy the topological conjugacy criterion while satisfying the topological equivalence criterion.
Two dynamical systems defined by the differential equations, and , are said to be smoothly equivalent if there is a diffeomorphism, , such that
In that case, the dynamical systems can be transformed into each other by the coordinate transformation, .
Two dynamical systems on the same state space, defined by and , are said to be orbitally equivalent if there is a positive function, , such that . Orbitally equivalent system differ only in the time parametrization.
Systems that are smoothly equivalent or orbitally equivalent are also topologically equivalent. However, the reverse is not true. For example, consider linear systems in two dimensions of the form . If the matrix, , has two positive real eigenvalues, the system has an unstable node; if the matrix has two complex eigenvalues with positive real part, the system has an unstable focus (or spiral). Nodes and foci are topologically equivalent but not orbitally equivalent or smoothly equivalent, because their eigenvalues are different (notice that the Jacobians of two locally smoothly equivalent systems must be similar, so their eigenvalues, as well as algebraic and geometric multiplicities, must be equal).
|
|